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Abstract: Consideration has been given to a single server Markovian queueing system that alternates between operating in regular 

busy state, repair state, and working vacation state. The system operates as a single server Markovian queue when it is busy. It 

operates once again as a single server Markovian queue with varying arrival and service rates when it is undergoing maintenance 

or vacation. The vacation time is negative exponential, and the vacation policy is multiple vacation policy. Furthermore, if a 

server malfunctions while being used, repairs are initiated right away. Two distinct negative exponential distributions are used to 

represent the breakdown and repair periods. The server provides the customer with service during the repair period at a rate that is 

negatively exponentially different from the service rate. Additionally, several interesting cases are given. 

Keywords: Working vacation, arrival rate based on state, and Matrix-Geometric technique. 

__________________________________________________*****_________________________________________________ 

1. Introduction 

Queuing and breakdown are two characteristics shared by 

the computer system, industrial system, production system, 

and communications network. In actuality, a queueing 

system with breakdown may be used to create these kinds of 

systems with these two characteristics. Numerous 

investigators have examined these models, such as 

Federgruen and Green (1986), Li et al. (1997), Tang (1997), 

Nakdimon and Yechiali (2003), Wang et al. (2007), Wang et 

al. (2008), and Choudhry and Tadj (2009) 

In day to day life, it can be seen that the server works during 

his vacation period, if the necessity occur, called working 

vacation queue. In the working vacation queues, the server 

works with variable service rate, in particular reduced 

service rate, rather than completely stops service during 

vacation period. Servi and Finn(2002) have first analyzed 

an𝑀/𝑀/1 queue with multiple working vacation, in which 

the vacation times are exponentially distributed. Wu and 

Takagi(2006) extend the work to an 𝑀/𝐺/1 queue. Kim et 

al.(2003) analyzed the queue length distribution of the 

𝑀/𝐺/1  queue with working vacations. Liu et al.(2007), 

examined stochastic decomposition structure of the queue 

length and waiting time in an 𝑀/𝑀/1  working vacation 

queue. Xu et al.(2009) extended the 𝑀/𝑀/1  working 

vacation queue to an 𝑀𝑋/𝑀/1  working vacation queue. 

Under certain assumptions, Li et al. (2009) analyzed an 

M/G/1 queue with exponential working vacation using the 

matrix analytic approach. A multi-server queue with a single 

working vacation is considered by Lin and Ke (2009). An 

individual working vacation model with server failure was 

studied by Jain and Jain (2010). In recent years, Ke et al. 

(2010) have provided a brief overview of vacation models.  

Yechiali and Naor (1971) considered a single-server 

exponential queuing model with arrival state depending on 

operational state or breakdown state of the server. This is 

because it is common to observe that both customer arrival 

and service depend on the current state of the system, i.e., 

number of customers in the system, etc.Fond and Ross 

(1977) calculated the steady-state percentage of lost 

customers by analyzing the same model on the premise that 

every arrival who discovers the server is busy is lost. A 

single server queueing model with arrival rate dependent on 

server status has been studied by Shogan (1979). 

Shanthikumar (1982) examined a Poisson queue with a 

single server and an arrival rate that varied based on the 

server's condition. A broad bulk service queue whose arrival 

rate was contingent on server failures was examined by 

Jayaraman et al. in 1994. The topic of queueing systems 

with variable arrival rates was covered by Tian and Yue 

(2002). The authores studied the model by using the 

principle of quasi-birth and death process(QBD) and matrix-

geometric method. Furthermore, they calculated some 

performance measures, such as the number of customers in 

the system in steady-state, etc., The Matrix-geometric 

technique approach is a helpful resource for handling more 

difficult queueing issues. Numerous scholars have used the 
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matrix-geometric technique to tackle a variety of queueing 

issues in various contexts. Different matrix geometric 

solutions of stochastic models were explained by Neuts 

(1981). The computable explicit formula for the probability 

distributions of the queue length and other system 

characteristics is developed using a matrix-geometric 

technique.  

In this research, we take a fresh approach by assuming that 

the server continues to function during the breakdown 

phase, although more slowly. State-specific factors also 

affect the arrival rates. In addition, the server goes on 

vacation anytime the system is empty, and it stays on 

vacation until at least one customer is waiting to be served. 

If any clients arrive during the vacation time, the server will 

serve them more slowly. 

 In this paper, we consider an 𝑀/𝑀/1queuewith multiple 

working vacation and with partial breakdown. The arrival 

rate dependents on the server states. The matrix geometric 

approach has been used to study the model. The remainder 

of this essay is structured as follows: We describe the model 

and establish its quasi-birth-death process in section 2. We 

use the matrix geometric technique to describe the steady 

state solution in section 3. We provide some system 

performance metrics in section 4. Section 5 provides a few 

specific models. and In section 6, we carried out a numerical 

study. 

 

2. The Model 

We consider a single-server queueing system with the 

following characteristics: 

1. The system alternate between two states, up state 

and down state. In the up state it is either in regular 

state or in working vacation state. In the down state 

it is in the repair state. 

2. Arrival process follows Poisson. 

3. When the system is in regular busy period it serves 

customers based on exponential distribution with 

rate µ. 

4. During the regular busy period the arrival 

parameter is λ. 

5. The server takes vacation, if there are no customer 

in the queue at a service completion point. 

6. During vacation, the arrival rate is𝜆1(𝜆1 < 𝜆). 

7. Vacation period follows negative exponential 

distribution with rate θ and the vacation policy is 

multiple vacation policy. 

8. When the server is in vacation, if customer arrives, 

the server serves the customer using exponential 

distribution with rateµ1(µ1 < µ). The server may 

break down during a service and the break downs 

are assumed to occur according to a Poisson 

process with rate α. 

9. Once the system break downs, the customer whose 

service is interrupted goes to the head of the queue 

and the repair to server starts immediately. 

10. Duration of repaired period follows negative 

exponential with rate β. 

11. During repair period customers arrive according to 

Poisson process with rate 𝜆2  (𝜆2 < 𝜆1). 

12. During repair period the server serves the 

customers, and the service period follows negative 

exponential with rateµ2 (µ2 < µ1 < µ). 

13. The first come first served (FCFS) service rule is 

followed to select the customer for service. 

2.1 The quasi-birth-and-death (QBD) process: 

The model defined in this article can be studied as a QBD 

process. The following notations are necessary for the 

analysis: 

Let 𝐿(𝑡) be the number of customers in the queue at time 𝑡 

and let 

𝐽(𝑡) = {

 0, 𝑖𝑓𝑡ℎ𝑒𝑠𝑒𝑟𝑣𝑒𝑟𝑖𝑠𝑜𝑛𝑤𝑜𝑟𝑘𝑖𝑛𝑔𝑣𝑎𝑐𝑎𝑡𝑖𝑜𝑛  
1, 𝑖𝑓𝑡ℎ𝑒𝑠𝑒𝑟𝑣𝑒𝑟𝑖𝑠𝑏𝑢𝑠𝑦                                  

2, 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑜𝑛 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛
 

 

be the server state at time 𝑡. 

Let 𝑋(𝑡) = (𝐿(𝑡), 𝐽(𝑡)) , then {(𝑋(𝑡)): 𝑡 ≥ 0}  is a 

Continuous time Markov chain (CTMC) with state 

space  𝑆 = {(𝑖, 𝑗): 𝑖 ≥ 0; 𝑖 = 0,1,2} , where i denotes the 

number of customer in the queue and j denotes the server 

state. 

Using lexicographical sequence for the states, the rate 

matrix𝑄, is the infinitesimal generator of the Markov chain 

and is given by 

𝑄 =

[
 
 
 
 
 
 
𝐵0𝐴0                                      

𝐴2𝐴1𝐴0

𝐴2𝐴1𝐴0

𝐴2𝐴1𝐴0

                .   .    .
                    .    .   .

                           .    .   .]
 
 
 
 
 
 

 

 

where the sub-matrices 𝐴0, 𝐴1 and 𝐴2 are of order 3 × 3 and 

are appearing as 

𝐴0 = [
𝜆1 0 0
0 𝜆 0
0 0 𝜆2

] 

𝐴1 = [

−(𝜆1 + µ1 + 𝜃) 𝜃 0
0 −(𝜆 + µ + 𝛼) 𝛼

0 𝛽 −(𝜆2 + µ2 + 𝛽)
] 
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𝐴2 = [

µ1 0 0
0 µ 0
0 0 µ2

] 

and the boundary matrix is defined by 

𝐵0 = [

−(λ1 + θ) θ 0
µ −(𝜆 + µ + 𝛼) 𝛼

0 𝛽 −(𝜆2 + 𝛽)
] 

We define the matrix𝐴 as𝐴 = 𝐴0 + 𝐴1 + 𝐴2. This matrix 𝐴 

is a 3 × 3 matrix and it is of the form 

𝐴 = [
−𝜃 𝜃 0
0 −𝛼 𝛼
0 𝛽 −𝛽

] 

3. The Steady State Solution 

Let 𝑃 = (𝑝0, 𝑝1, 𝑝2, … )  be the stationary probability 

vector associated with 𝑄 , such that 𝑃𝑄 = 0  and 𝑃𝑒 = 1, 

where 𝑒 is a column vector of 1's of appropriate dimension. 

Let 𝑝0 = (𝑝00, 𝑝01, 𝑝02) and 𝑝𝑖 = (𝑝𝑖0, 𝑝𝑖1, 𝑝𝑖2) for𝑖 ≥ 1. 

 If the steady state condition is satisfied, then the sub 

vectors 𝑝𝑖  are given by the following equations: 

𝑝0𝐵0 + 𝑝1𝐴2 = 0                                                         (1) 

𝑝𝑖𝐴0 + 𝑝𝑖+1𝐴1 + 𝑝𝑖+2𝐴2 = 0, 𝑖 ≥ 0                        (2) 

𝑝𝑖 = 𝑝0𝑅
𝑖 ; 𝑖 ≥ 1                                                           (3) 

where 𝑅 is the rate matrix, is the minimal non-negative 

solution of the matrix quadratic equation (see Neuts(1981)). 

𝑅2𝐴2 + 𝑅𝐴1 + 𝐴0 = 0,                                                (4) 

Substituting the equation (3) in (1), we get 

𝑝0(𝐵0 + 𝑅𝐴2) = 0                                                        (5) 

and the normalizing condition is 

𝑝0(𝐼 − 𝑅)−1𝑒 = 1                                                         (6) 

Theorem: 3.1 

The queueing system described in section 2 is stable if 

and only if𝜌 < 1, where 

𝜌 =
𝜆2𝛼 + 𝜆𝛽

µ𝛽 + µ2α
 

 

Theorem: 3.2 

If𝜌 < 1, the matrix equation (4) has the minimal non-

negative solution 

𝑅 = −𝐴0𝐴1
−1 − 𝑅2𝐴2𝐴1

−1 

Proof 

Since the matrix A is reducible. The analysis present in 

Neuts(1978) is not applicable. In Lucantoni(1979), similar 

reducible matrix is treated for the case when the elements 

are probabilities.  

Equation (4) can be written as 

𝐴0𝐴1
−1 + 𝑅𝐴1𝐴1

−1 + 𝑅2𝐴2𝐴1
−1 + 0. 𝐴1

−1 

Since 𝐴1is non-singular, 𝐴1
−1 exists and 

𝑅 = −𝐴0𝐴1
−1 − 𝑅2𝐴2𝐴1

−1                                                        (7) 

where, 

𝐴1
−1

=

[
 
 
 

−1

(𝜆1 + µ1 + 𝜃)

𝑆0(𝜆2 + µ2 + 𝛽)𝜃

(𝜆1 + µ1 + 𝜃)

𝑆0𝛼𝜃

(𝜆1 + µ1 + 𝜃)

0 𝑆0(𝜆2 + µ2 + 𝛽) 𝑆0𝛼
0 𝑆0𝛽 𝑆0(𝜆 + µ + 𝛼)]

 
 
 

 

𝑆0 =
1

[𝛼𝛽 − (𝜆 + µ + 𝛼)(𝜆1 + µ1 + 𝛽)]
 

 

Using Nuets and Lucantoni(1979), the matrix R is 

numerically computed by using the recurrence relation with 

𝑅(0) = 0 in equation (7). 

Theorem: 3.3 

 If  𝜌 < 1 , the stationary probability vectors 𝑝0 =

(𝑝00, 𝑝01𝑝02) and𝑝𝑖 = (𝑝𝑖0, 𝑝𝑖1𝑝𝑖2); 𝑖 ≥ 1 are 

𝑝00

=
1

𝑆1 + 𝑆2[(𝜆1 + 𝜃) − µ1𝑟0] − 𝑆3[(µ𝑟01 + 𝜃) +
1

µ
[(𝜆1 + 𝜃) − µ1𝑟0][µ𝑟1 − (𝜆 + µ + 𝛼)]]

 

𝑝01 =
1

µ
[(𝜆1 + 𝜃) − µ1𝑟0]𝑝00 

𝑝02 =
−1

(𝛽 + µ𝑟21)
[(µ𝑟01 + 𝜃) +

1

µ
[(𝜆1 + 𝜃) − µ1𝑟0][µ𝑟1

− (𝜆 + µ + 𝛼)]]𝑝00 

and𝑝𝑖 = 𝑝0𝑅
𝑖; 𝑖 ≥ 1                                              

where, 

𝑆1 =
1

1 − 𝑟0
+

𝑟21𝑟02 + 𝑟01(1 − 𝑟2) + 𝑟01𝑟12 + 𝑟02(1 − 𝑟1)

(1 − 𝑟0)[(1 − 𝑟1)(1 − 𝑟2) − 𝑟21𝑟12])
 

𝑆2 =
1 − 𝑟2 + 𝑟12

µ[(1 − 𝑟1)(1 − 𝑟2) − 𝑟21𝑟12]
 

𝑆3 =
1 − 𝑟1 + 𝑟21

(𝛽 + µ𝑟21)[(1 − 𝑟1)(1 − 𝑟2) − 𝑟21𝑟12]
 

Proof 

𝑝00, 𝑝01and 𝑝02follows from the equations (5) and (6). 

Remark: 3.1 

 Even though 𝑅 in Theorem 3.2 has a nice structure 

which enables us to make use of the properties like𝑅𝑛 =

[
𝑟0

𝑛 𝑟01 ∑ 𝑟0
𝑗
𝑟1

𝑛−𝑗−1𝑛−1
𝑗=0

0 𝑟1
𝑛

] , for 𝑛 ≥ 1,  due to the form of 

𝑟0 &𝑟01 , it may not be easy to cary out the computation 

required to calculate the 𝑝𝑖  and the performance measures.  

𝑅(0) = 0                                                                       (8) 

𝑅(𝑛 + 1) = −𝐴0𝐴1
−1 − [𝑅(𝑛)]2𝐴2𝐴1

−1 for n≥ 0 (9) 

and is the limit of the monotonically increasing sequence of 

matrices {𝑅(𝑛), 𝑛 ≥ 0}. 

4. Performance Measures 

(i) Mean queue length 𝐸(𝐿) = 𝑝0𝑅(𝐼 − 𝑅)−2𝑒 

(ii) 𝐸(𝐿2) = 𝑝0𝑅(𝐼 + 𝑅)(𝐼 − 𝑅)−3𝑒 
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(iii) Variance of queue length𝐿 = 𝑣𝑎𝑟(𝐿) 

= [𝑝0𝑅(𝐼 + 𝑅)(𝐼 − 𝑅)−3𝑒] − [𝑝0𝑅(𝐼 − 𝑅)−2𝑒]2 

(iv) Probability that the server is ideal =𝑝0𝑒 

(v) Mean queue length when the server is an 

vacation period =∑ 𝑖𝑝𝑖0
∞
𝑖=0  

(vi)  Mean queue length when the server is in 

regular busy period = ∑ 𝑖𝑝𝑖1
∞
𝑖=0  

(vii) Probability that the server is in working 

vacation period = pr{J=0}=∑ 𝑝𝑖0
∞
𝑖=1  

(viii) Probability that the server is in regular 

busy period= pr{J=1}=∑ 𝑝𝑖1
∞
𝑖=1  

 

5. Particular Model 

In the above model, we assume that 𝜆1 = 𝜆2 = 𝜆, andµ1 =

µ2 = µ, then we get 

𝑅 = −𝐴0𝐴1
−1 − 𝑅2𝐴2𝐴1

−1 

𝑝00

=
1

𝑆1 + 𝑆2[(𝜆 + 𝜃) − µ𝑟0] − 𝑆3[(µ𝑟01 + 𝜃) +
1

µ
[(𝜆 + 𝜃) − µ𝑟0][µ𝑟1 − (𝜆 + µ + 𝛼)]]

 

𝑝01 =
1

µ
[(𝜆 + 𝜃) − µ𝑟0]𝑝00 

𝑝02 =
−1

(𝛽 + µ𝑟21)
[(µ𝑟01 + 𝜃) +

1

µ
[(𝜆 + 𝜃) − µ𝑟0][µ𝑟1 − (𝜆

+ µ + 𝛼)]]𝑝00 

 

and𝑝𝑖 = 𝑝0𝑅
𝑖; 𝑖 ≥ 1 

where  

𝐴0 = [
𝜆 0 0
0 𝜆 0
0 0 𝜆

] 

𝐴2 = [
µ 0 0
0 µ 0
0 0 µ

] 

𝐴1
−1 =

[
 
 
 

−1

(𝜆 + µ + 𝜃)

𝑆4(𝜆 + µ + 𝛽)𝜃

(𝜆 + µ + 𝜃)

𝑆4𝛼𝜃

(𝜆 + µ + 𝜃)

0 𝑆4(𝜆 + µ + 𝛽) 𝑆4𝛼
0 𝑆4𝛽 𝑆4(𝜆 + µ + 𝛼)]

 
 
 

 

𝑆4 =
1

[𝛼𝛽 − (𝜆 + µ + 𝛼)(𝜆 + µ + 𝛽)]
 

6. Numerical Study 

In this section, some examples are given to show the effect 

of the parameters 𝜆, 𝜆1, 𝜆2 , µ, µ1, µ2, 𝜃, 𝛼  and 𝛽 on the 

performance measures mean queue length, 𝐸(𝐿2), variance 

of queue length𝐿, For the model examined in this paper, the 

following variables are relevant: probability that the server 

is idle, mean queue length during the server's vacation 

period, mean queue length during the regular busy period, 

probability that the server is working during its vacation 

period, and probability that the server is in regular busy 

period. Case(1), Case(2), and Case (3) represent the 

equivalent findings. 

 

Case(i):If  𝜆 = 0.7, 𝜆1 = 0.5, 𝜆2 = 0.3 , µ = 4, µ1 = 2, µ2 =

1, 𝜃 = 0.6, 𝛼 = 0.3  and  𝛽 = 0.5 , the matrix 𝑅  is obtained 

using the equations (8)& (9) 

𝑅 = [
0.182864 0.031707 0.007446

0 0.166345 0.034620
0 0.026950 0.192199

] 

and the invariant probability vector is 𝑃 =

(𝑝0, 𝑝1, 𝑝2, … ), where 

𝑝0 = (0.530459, 0.134089, 0.082768) 

and the remaining vectors 𝑝𝑖 ’s are evaluated using the 

relation𝑝𝑖 = 𝑝0𝑅
𝑖; 𝑖 ≥ 1 

𝑝1

= (0.097001850605, 0.041354890913, 0.024499885738) 

𝑝2

= (0.017738146707, 0.010615088977, 0.006862835493) 

𝑝3

= (0.003243668471, 0.002513143932, 0.001818602788) 

𝑝4

= (0.000593150151, 0.000569907250, 0.000460691052) 

𝑝5

= (0.000108465807, 0.000126023864, 0.000112691145) 

𝑝6

= (0.000019834491, 0.000027439592, 0.000026829708) 

𝑝7

= (0.000003627014, 0.000005916392, 0.000006254289) 

𝑝8

= (0.000000663250, 0.000001267717, 0.000001433900) 

𝑝9

= (0.000000121285, 0.000000270552, 0.000000324421) 

𝑝10

= (0.000000022179, 0.000000057594, 0.000000072623) 

For the chosen parameters 𝑝10 → 0 , and the sum of the 

steady state probabilities is found to be 0.955029 

The performance measures are 

(i)  Mean queue length 𝐸(L) =0.24836 

(ii) 𝐸(𝐿2) =0.410295 

(iii) Variance of queue length𝐿 = 𝑣𝑎𝑟(𝐿) =0.348612 

(iv) Probability that the server is ideal =0.747316 

(v) Mean queue length when the server is an vacation 

period =0.010906 

(vi) Mean queue length when the server is regular busy 

period =0.037819 

(vii) Probability that the server is in working vacation 

period 

= 𝑝𝑟{𝐽 = 0} =0.010221 

(viii) Probability that the server is in regular 
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busy period= 𝑝𝑟{𝐽 = 1} =0.031502 

Case(ii):If 𝜆 = 0.6, 𝜆1 = 0.4, 𝜆2 = 0.2, µ = 5, µ1 = 3, µ2 =

1, 𝜃 = 0.7, 𝛼 = 0.2 and𝛽 = 0.6 , the matrix 𝑅   is obtained 

using the equations (8)& (9) 

𝑅 = [
0.105742 0.016102 0.002201

0 0.116943 0.014977
0 0.013937 0.121081

] 

and the invariant probability vector is 𝑃 =

(𝑝0, 𝑝1, 𝑝2, … ), where 

𝑝0 = (0.677333, 0.121695, 0.021559) 

and the remaining vectors 𝑝𝑖 ’s are evaluated using the 

relation 𝑝𝑖 = 𝑝0𝑅
𝑖; 𝑖 ≥ 1 

𝑝1

= (0.082196749747, 0.027048461139, 0.006143921055)  

𝑝2

= (0.008691648953, 0.004572287668, 0.001329931896)  

𝑝3

= (0.000919072365, 0.000693185197, 0.000248638971)  

𝑝4

= (0.000097184551, 0.000099327342, 0.000042510168)  

𝑝5

= (0.000010276489, 0.000013772967, 0.000006848702)  

𝑝6

= (0.000001086657, 0.000001871574, 0.000001058144)  

𝑝7

= (0.000000114905, 0.000000251112, 0.000000158543)  

𝑝8

= (0.000000012150, 0.000000033426, 0.000000023210)  

𝑝9

= (0.000000001285, 0.000000004428, 0.000000003338)  

𝑝10

= (0.000000000136, 0.000000000585, 0.000000000473)  

 For the chosen parameters𝑝10 → 0 , and the sum of the 

steady state probabilities is found to be 0.95269546 

The performance measures are 

(i) Mean queue length 𝐸(L) =0.135078 

(ii) 𝐸(𝐿2) =0.174399 

(iii) Variance of queue length𝐿 = 𝑣𝑎𝑟(𝐿) =0.156153 

(iv) Probability that the server is ideal =0.820587 

(v) Mean queue length when the server is an vacation 

period =0.011128 

(vi) Mean queue length when the server is regular busy 

period =0.080998 

(vii) Probability that the server is in working vacation 

period 

= 𝑝𝑟{𝐽 = 0} =0.010102 

(viii) Probability that the server is in regular 

busy period= 𝑝𝑟{𝐽 = 1} =0.054003 

Case(iii):If  𝜆1 = 𝜆2 = 𝜆 = 0.6 , µ1 = µ2 = µ = 4, 𝜃 =

0.7, 𝛼 = 0.2 and  𝛽 = 0.6, the matrix 𝑅   is obtained using 

the equations (8)& (9) 

𝑅 = [
0.125 0.023709 0.001291

0 0.143042 0.006959
0 0.020876 0.129125

] 

and the invariant probability vector is 𝑃 =

(𝑝0, 𝑝1, 𝑝2, … ), where 

𝑝0 = (0.625033, 0.151007, 0.056039) 

and the remaining vectors 𝑝𝑖 ’s are evaluated using the 

relation 𝑝𝑖 = 𝑝0𝑅
𝑖; 𝑖 ≥ 1 

𝑝1

= (0.078129127622, 0.037589121610, 0.009093811736)  

𝑝2

= (0.009766140953, 0.007419028785, 0.001536685857)  

𝑝3

= (0.001220767619, 0.001324858051, 0.000262661662)  

𝑝4

= (0.000152595952, 0.000223936848, 0.000044711884)  

𝑝5

= (0.000019074494, 0.000036583675, 0.000007528800)  

𝑝6

= (0.000002384312, 0.000005842410, 0.000001251367)  

𝑝7

= (0.000000298039, 0.000000918363, 0.000000205318)  

𝑝8

= (0.000000037255, 0.000000142717, 0.000000033287)  

𝑝9

= (0.000000004657, 0.000000021993, 0.000000005339)  

𝑝10

= (0.000000000582, 0.000000003368, 0.000000000849)  

For the chosen parameters  𝑝10 → 0 , and the sum of the 

steady state probabilities is found to be 0.988916 

The performance measures are 

(i) Mean queue length 𝐸(L) =0.172750 

(ii) 𝐸(𝐿2) =0.233721 

(iii) Variance of queue length𝐿 = 𝑣𝑎𝑟(𝐿) =0.203878 

(iv) Probability that the server is ideal =0.832079 

(v) Mean queue length when the server is an vacation 

period =0.007599 

(vi) Mean queue length when the server is regular busy 

period =0.219899 

(vii) Probability that the server is in working vacation 

period 

= 𝑝𝑟{𝐽 = 0} =0.007243 

(viii) Probability that the server is in regular 

busy period= 𝑝𝑟{𝐽 = 1} =0.141743 
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