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Abstract –If V – Dcr(G) contains clique regular dominating set D{\cr(G), then D{\cr(G) is called the inverse clique regular 

dominating set with regard to Dcr(G). A subset Dcr(G)of a fuzzy graph G=(σ,µ) is said to be a clique regular dominating set.The 

lowest fuzzy cardinality calculated over all minimal inverse clique regular dominating sets of G is known as the inverse clique 

domination number, or ⁧cr(G)\ 
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1. INTRODUCTION 

The concepts of regular domination and lique domination in 

graphs were first introduced by Kulli V.R. et al. [3]. The 

concept of a fuzzy graph was first proposed by Rosenfield, 

who also established a number of fuzzy analogues of graph 

theoretic ideas as path, cycles, and connectedness[9].The 

topic of dominance in fuzzy graphs was covered by A. and 

S. Somasundram [10]. The inverse clique regular dominance 

number in fuzzy graphs is discussed in this study, and the 

relationship with other well-known parameters of G. 

2. PRELIMINARIES 

Definition:2.1 

Let G=(V,E) be a graph. A subset D of V is called a 

dominating set in G if every vertex in V-D is adjacent to 

some vertex in D. The domination number of G is the 

minimum cardinatliy taken over all dominating sets in G and 

is denoted by (G). 

Definition: 2.2 

Let G=( σ, µ) be a fuzzy graph on V and V1 V. Define σ1 

on V1   by σ1(u)=σ(u)for all u V1   and µ1 on the collection 

E1 of two element subsets of V1 by µ1({u ,v}) = µ({u ,v}) for 

all u,v V1, then (σ1,µ1) is called the fuzzy subgraph of G 

induced by V1 and is denoted by <V1>. 

Definition:.2.3 

The fuzzy subgraph H=(1, 1) is said to be a spanning 

fuzzy subgraph of G=(, ) if 1(u)=(u) for all uV1 and 

1(u, v)≤(u, v) for all u,vV. Let G (, ) be a fuzzy graph 

and 1 be any fuzzy subset of V1, i.e. ,1( u)≤ (u) for all u. 

Definition: 2.4 

Let G=(,) be a fuzzy graph on V. Let u, vV. We say that 

u dominates v in G if ({u,v})=(u)(v). A subset D of V 

is called a dominating set in G if for every vD, there exists 

uD such that u dominates v. The minimum fuzzy 

cardinality of a dominating set in G is called the domination 

number of G and is denoted by (G)or. 

Definition: 2.5 

A dominating set D of a fuzzy graph G is said to be a 

minimal dominating if no proper subset D of D is 

dominating set of G such that  

∑ 𝜎(𝑣𝑖) ˂

𝑣𝑖𝐷

∑ 𝜎(𝑣𝑖)

𝑣𝑖𝐷

 

Definition: 2.6 

The order p and size q of a fuzzy graph G=(σ,µ) are defined 

to be p =
V  

)(
u

u  and       q = 
Evu ),(

µ({u ,v}). 

Definition: 2.7 

An edge e={u, v} of a fuzzy graph is called an effective 

edge if µ({u,v}) = σ(u)  σ(v). 

N(u) = { vV/ µ({u ,v}) = σ(u)  σ(v)} is called the 

neighborhood of u and N[u]=N(u)  {u} is the closed 

neighborhood of u. 

The effective degree of a vertex u is defined to be the sum of 

the weights of the effective edges incident at u 
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and is denoted by dE(u). ∑ (𝑣)𝑣𝑁(𝑢) is called the 

neighborhood degree of u and is denoted by dN(u). The 

minimum effective degree E(G)=min{dE(u) / uV(G)} and 

the maximum effective degree E (G) = max{dE(u) / 

uV(G)}. 

Definition: 2.8 

A vertex u of a fuzzy graph is said to be an isolated vertex if 

µ({u ,v})  σ(u)  σ(v)} for all vV̶ {u} , that is , N(u) =, 

Thus an isolated vertex does not dominate any other vertex 

in G. 

Definition: 2.9 

A set D of vertices of a fuzzy graph is said to be 

independent if µ({u,v})  σ(u)  σ(v)}for all u , vD. 

Definition: 2.10 

The complement of a fuzzy graph G, denoted by 𝐺̅ is 

defined to be 𝐺̅ = (, ̅) where ̅({𝑢, 𝑣}) = (𝑢)(𝑣) −

({𝑢, 𝑣}). 

Definition: 2.11 

Let: V→ [0, 1] be a fuzzy subset of V. Then the complete 

fuzzy graph on  is defined to be (,) where 

({u,v})=(u)(v) for all uvE and is denoted by K. 

Definition: 2.12 

A fuzzy graph G=(,µ) is said to be bipartite if the vertex V 

can be partitioned into two nonempty sets V1 and V2 such 

that µ(v1,v2)=0 if v1,v2V1 or v1,v2V2. Further, if 

(u,v)=(u) (v) for all uV1 and vV2 then G is called a 

complete bipartite graph and is denoted by 𝐾1
,2

 where 1 

and 2 are the restrictions of  to V1 and V2 respectively. 

Definition: 2.13 

Let G = (σ, µ) be a regular fuzzy graph on G*= (V, E). If 

dG(v) = k for all vV, (i.e ,) if each vertex has same degree 

k, then G is said to be a regular fuzzy graph of degree k or k-

regular fuzzy graph. Where G*= (V, E) is an underlying 

crisp graph. 

Remark: 2.14  

G is k-regular graph iff ==k. 

Definition: 2.15 

Let G= (σ, µ) be a fuzzy graph. The total degree of a vertex 

uV is defined by tdG(u) = dG(u) + σ(u) = 
Euv

uv)( +σ(u). 

If each vertex of G has the same total degree k then G is said 

to be a totally regular fuzzy graph of total degree k or k-

totally regular fuzzy graph 

Definition: 2.16 

A set of fuzzy vertex which covers all the fuzzy edges is 

called a fuzzy vertex cover of G and the minimum 

cardinality of a fuzzy vertex cover is called a vertex 

covering number of G and denoted by (G). 

Definition: 2.17 

Let G = (, ) be a fuzzy graph on D and D  E then the 

fuzzy edge cardinality of D is defined to be 
e D
 (e). 

Definition: 2.18 

The effective degree of a vertex u is defined to be the sum of 

the weights of the effective edges incident of ‘u’ and is 

denoted by dE(u).
v N(v)
 (v) is called the neighbourhood of 

u and is denoted by dN(u). 

Definition: 2.19 

The minimum effective degree E(G) = min{dE(u) | 

u V(G)} and the maximum effective degree E(G) = max 

{dE(u) | u V(G)}. 

3. MAIN RESULTS 

Definition 3.1   

 Let G = (, ) be a fuzzy graph without isolated vertices. A 

subset Dcr(G)of V is said to be a clique regular dominating 

set if V – Dcr(G) contains clique regular dominating set 

Dꞌcr(G) then Dꞌcr(G) is called the inverse clique regular 

dominating set with respect to Dcr(G) .The inverse clique 

domination number ꞌcr(G) is the minimum fuzzy cardinality 

taken over all minimal inverse clique regular dominating 

sets of G. 

Example 3.2   
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Dcr(G) = {v1, v2, v3}    cr(G) = 0.6 

Dꞌcr(G) = {v4, v5, v6}   ꞌcr(G) = 0.6 

 

Theorem 3.3   

      If G = (, ) is a complete fuzzy graph Kσ with n≥2 then  

           (i) <N(Dcr(G)) > is a fuzzy complete graph with (n–1) 

vertices. 

          (ii) < N (Dꞌcr(G)) > is a fuzzy complete graph with (n–

2) vertices 

Proof: 

          Let G = (, ) be a complete fuzzy graph Kσ with 

(vi) = c, for every viV and  n≥2. Dcr(G) is the fuzzy 

clique regular dominating set. Clearly Dcr(G) = { vi } and < 

N(Drc(G)) >  is a complete fuzzy graph with (n-1) fuzzy 

vertices. Clearly < N(Drc(G)) >  is a complete fuzzy graph 

with (n–1)  fuzzy vertices., further V- Dcr(G) = V– { vi } = { 

v1,v2,….vi-1,vi+1,…,vn}. 

           Let Dꞌcr(G)   V– Dcr(G) is the fuzzy inverse clique 

regular dominating set then Dꞌcr(G) = { vj / (vi) is 

minimum, j i},also < V– Dꞌcr(G) >  is regular with vertices 

of degree (n–2)c. Moreover, <N(Dꞌrc(G)) >  is complete with 

(n–2) fuzzy vertices. Therefore, < N (Dꞌcr(G)) > is a 

complete fuzzy graph with (n–2) intuitionistic fuzzy 

vertices. 

Theorem 3.4   

If G = (, ) is  a fuzzy cycle with equal  fuzzy vertex 

cardinality and ꞌcr(G) - set exist, then < N(Dcr(G)) > is a 

fuzzy complete graph with two vertices. 

Proof: 

            G = (, ) be a fuzzy cycle with vertex set  V = { 

v1,v2,….vi,vi+1,…,vn= v0} such that vi  is adjacent with v (i-1) 

mod n and v (i+1) mod n1 ≤ i ≤ n. Moreover, vi dominates             

v (i-1) mod n and v (i+1) mod n. Let Dcr(G) be the clique regular 

dominating set with (n-2) vertices such that < N(Drc(G)) >  

is regular and also complete graph with two fuzzy vertices. 

Therefore, <N(Drc(G)) > is a fuzzy complete graph with two 

vertices. 

Theorem 3.5   

             If G = (, ) is  a fuzzy cycle and (vi)’s are 

constant with μ (vi, vj ) = min            { (vi), (vj) } then 

ꞌcr(G) = (n–2) (vi). 

 

Proof: 

            Let G = (, ) be a fuzzy cycle  with vertex set  V = 

{ v1,v2,….vi,vi+1,…,vn= v0} such that vi  is adjacent with v (i-

1) mod n and v (i+1) mod n1 ≤ i ≤ n. Moreover, vi dominates      v (i-

1) mod n and v (i+1) mod n and (vi) = c for every viG with μ (vi, 

vj ) = min { (vi), (vj) }, then by theorem 2.7.4 < N(Dcr) > 

is a fuzzy complete graph with two vertices , clearly Dꞌcr(G) 

has (n–2) fuzzy vertices. Therefore, the fuzzy clique regular 

domination number ꞌcr(G) = (n–2) (vi). 

Theorem 3.6   

                  If G = (, ) is  a fuzzy cycle with all effective 

edges, then ꞌcr(G) = p – max           { (vi) + (vi+1)}. 

 

Proof: 

             G = (, ) be a fuzzy cycle with vertex set  V = { 

v1,v2,….vi,vi+1,…,vn= v0} such that vi is adjacent with v (i-1) 

mod n and v (i+1) mod n1 ≤ i ≤ n. Moreover, vi dominates v (i-1) mod 

n and v (i+1) mod n. G is a fuzzy cycle of all effective edges then 

by theorem 2.7.4, Dcr(G) has (n-2) fuzzy vertices. V – Dcr(G)  

has a complete fuzzy graph with two fuzzy vertices. The 

fuzzy clique regular dominating set is the minimum fuzzy 

cardinality taken over all fuzzy clique regular dominating 

sets of G. 

 Therefore, ꞌcr(G) = p – max { (vi) + (vi+1)}. 

 

Theorem 3.7   

            If G = (, ) is  a fuzzy path with all effective edges 

then ꞌcr(G) = p – max { (vi) + (vi+1) / i≠1 or n} 

 

Proof: 

             Let  G = (, ) be a fuzzy path with vertex set V = { 

v1,v2,….vi,vi+1,…,vn} and having all effective edges, vi’s are 

adjacent with vi+1 also vi dominates vi+1, i= 1 to n–1. Let 

Dcr(G) be the clique regular dominating set which contains { 

vi / viG} such that < N(Dcr(G)) > is regular. The minimum 

fuzzy clique regular domination number             ꞌcr(G) = p – 

max { (vi) + (vi+1) / i≠1 or n}. 

 

Theorem 3.8   

            If G = (, ) is  a fuzzy wheel Wn+1 with (vi) = c, 

for every viV and all edges are effective then ꞌcr(G) = 

{(v) / v is the centre vertex of the fuzzy wheel}. 
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Proof: 

              Let G = (, ) be  a fuzzy wheel Wn+1 with (vi) = 

c, for every viV and having all effective edges. The vertex 

set of G is  { v,v1,v2,….vi,vi+1,…,vn} where v is the centre 

vertex of the fuzzy wheel,  v is adjacent with vi, i= 1 to n 

also v dominates vi i= 1 to n. Further, vi is adjacent with v (i-

1) mod n and v (i+1 ) mod n 1 ≤ i ≤ n and vi dominates v (i-1 mod n) 

and v (i+1 mod n) 1 ≤ i ≤ n. Let Dcr(G) be the clique regular 

dominating set which contains    { v /  v is the centre vertex 

of the fuzzy wheel} such that < N(Dcr) > is regular. 

Therefore, The minimum fuzzy clique regular domination 

number cr(G) = (v) = c, v is the centre vertex of the fuzzy 

wheel. 

Theorem 3.9  

           If G = (, ) is  a fuzzy wheel Wn+1 with  all edges 

are effective then ꞌcr(G) ˂ p – k where     k = (vi) + (vi+1) 

is maximum. 

 

Proof: 

Let G = (,) be a fuzzy wheel Wn+1 with vertex 

set {v, v1,v2 . . ., vn = v0} such that v is adjacent with v1, v2, . 

. . , vn = v0 and having  all effective edges. Let Dcr(G) = {v/v 

is the centre of the vertex} is the clique regular dominating 

set since <N(Dcr(G)> is  regular and  
'

crD (G) = V-{vi,vi+1} 

such that <
'

crD (G)> is regular. The inverse clique regular 

dominating number 
'

cr (G) is p – max {(vi) + (vi+1)} 

such that 
'

cr (G) is the minimum inverse clique regular 

dominating set of G. 

 

Theorem 3.10   

                If G = (, ) is  a fuzzy wheel Wn+1 with μ (vi, vj ) 

= min {(vi), (vj) }and (vi) = c, for every viV then 

ꞌcr(G) = p – 2c. 

 

Proof: 

Let G = (,) be a fuzzy wheel Wn+1 with vertex 

set {v,v1,v2, . . .vn = v0} and having (vi,vj) = (vi) (vj). 

Let Dcr(G) = {v/v is the centre of the wheel} and  
'

crD (G) = 

V–{vi,vi+1} such that <N(
'

crD (G))> is regular, which is  K2. 

Therefore, inverse clique regular domination number 
'

cr

(G) then by theorem 2.7.9, 
'

cr (G) = p –max {(vi) + 

(vi+1)} since (vi) = c, for every viV clearly  
'

cr (G)  = p 

–2c. 

 

Corollary: 3.11   

             If all edges are not effective in a fuzzy path G = (, 

) then ꞌcr(G) does not exist. 

 

Theorem 3.12   

If G = (, ) is a complete fuzzy graph then cr(G) - set and 

ꞌcr(G) - set exists but converse need not be true. 

 

Proof: 

 If G = (, ) is a complete fuzzy graph Kσ with vertex set  { 

v1,v2,….vi,vi+1,…,vn} and every v V is adjacent to the 

other vertices. Further, every v dominates the other vertices. 

Suppose the degree of all viV are equal. Then the fuzzy 

clique regular dominating set exists, therefore cr(G) - set 

exists. 

             Converse need not be true since cr(G) - set exists, 

the degree of viV are equal, but all vi’s need not adjacent 

with other vertices, further all vi’s need not dominate the 

other vertices. By definition of complete graphs, G is not a 

fuzzy complete graph. 

Example 3.13   

 

Fig.2 
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